Three-component Reaction in Aqueous Media

Daqing Shi, ${ }^{1,2}$ Lihui Niu ${ }^{2}$, Jingwen Shi ${ }^{2}$, Xiangshan Wang ${ }^{2}$, Shunjun Ji ${ }^{1}$
${ }^{1}$ College of Chemistry and Chemical Engineering, Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou University, Suzhou 215123, P. R. China
${ }^{2}$ Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, P. R. China
E-mail: dqshi@suda.edu.cn Received November 9, 2006

Abstract

A short and facile synthesis of pyrido[2,3-d]pyrimidine derivatives was accomplished in good yields via the three-component reaction of aldehydes, alkyl nitriles and aminopyrimidines in water in the presence of triethylbenzylammonium chloride (TEBAC). The structures of these compounds were characterized by elemental analysis, IR and ${ }^{1} \mathrm{H}$ NMR spectra and further confirmed by single crystal X-ray diffraction analysis.

J. Heterocyclic Chem., 44, 1083 (2007).

INTRODUCTION

The importance of uracil and its annulated derivatives is well recognized by synthetic [1] as well as biological [2] chemists. With the development of clinically useful anticancer and antiviral drugs [3], there has recently been remarkable interest in the synthetic manipulations of uracils [4]. Pyrido[2,3- d]pyrimidines represent a heterocyclic ring system of considerable interest because of several biological activities associated with this scaffold. Some analogues have been found to act as anticancer agents inhibiting dihydrofolate reductases or tyrosine kinases [5], while others are known antiviral agents [6]. Therefore, for the preparation of these complex molecules large efforts have been directed towards the synthetic manipulation of uracils. As a result, a number of reports have appeared in the literature. Broom et al. [7] synthesized pyrido[2,3-d]pyrimidines from the reaction of DMAD and 6-aminouracil in protic solvent but obtained uncyclized condensed acetylenic adduct [8] when the reaction was carried in dimethylformamide. Bhuyan et al. [9] reported the synthesis of pyrido[2,3- d]pyrimidines from the reaction of arylidenemalononitrile with 6aminouracil in refluxing 1-propanol, but in this reaction, benzylmalononitrile was obtained as by-product and the amount of arylidenemalononitrile needed was in excess. Recently Devi et al. [10] reported a novel threecomponent one-pot synthesis of pyrido[2,3- d]pyrimidines using microwave heating. These methods usually require forcing conditions, using organic solvents, long reaction times and complex synthetic pathways. Thus new routes
for the synthesis of these molecules have attracted considerable attention in search for a rapid entry to these heterocycles.

Multicomponent reactions (MCRs) are of increasing importance in organic and medicinal chemistry. The first MCR was described by Strecker in 1850 for the synthesis of amino acids [11]. However, in the past decade there have been tremendous developments in three- and fourcomponent reactions and great efforts continue to be made to develop new MCRs [12]. The need to reduce the amount of toxic waste and by-product arising from chemical processes requires increasing emphasis on the use of less toxic and environmentally compatible materials in the design of new synthetic methods. One of the most promising approaches is using water as the reaction media. Breslow [13], who showed that hydrophobic effects could strongly enhance the rate of several organic reactions, rediscovered the use of water as a solvent in organic chemistry in the 1980's. There has been growing recognition that water is an attractive medium for many organic reactions [14] and many MCRs in aqueous medium have been reported [15]. As part of our current studies on the development of new routes to heterocyclic systems [16], we now report an efficient and clean synthetic route to pyrido[2,3-d]pyrimidine derivatives in aqueous media catalyzed by TEBAC.

RESULTS AND DISCUSSION

When the reaction of 4-chlorobenzaldeyhde 1a, malononitrile 2 and 1,3-dimethyl-6-aminouracile 3a was
performed in water in the presence of TEBAC at $90^{\circ} \mathrm{C}$, in a 96% yield of 2-amino-6,8-dimethyl-5,7-dioxo-4-(4-chlorophenyl)pyrido[2,3-d]pyrimidine-3-carbonitrile (4a) was obtained (Scheme 1). We tested this reaction in different organic solvents and the yields were lower (Table 1). When substituted aldehydes $\mathbf{1 b}-\mathbf{z}$ and 6aminouraciles $\mathbf{3 b}-\mathbf{z}$ were employed, the same products $\mathbf{4 b}-\mathbf{z}$ were obtained (Table 2).

Scheme 1

Table 1
Synthesis of 7-amino-1,3-dimethyl-2,4-dioxo-5-(4-chlorophenyl)-pyrido[2,3- d]pyrimidine-6-carbonitrile (4a) in different solvents

Entry	Solvent	Time (h)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)
4a	water	12	90	96
4a	ethanol	18	78	55
4a	acetone	24	55	42
4a	1,2-dichloroethane	17	80	38
4a	dichloromethane	19	40	60
4a	DMF	24	90	20

Table 2
Synthesis of pyrido[2,3- d]pyrimidine derivatives $\mathbf{4}$ in aqueous medium

Entry	R	R ${ }^{1}$	R^{2}	Time (h)	Yield (\%)
4 a	4- $\mathrm{ClC}_{6} \mathrm{H}_{4}$	CH_{3}	CH_{3}	12	96
4b	$2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	CH_{3}	CH_{3}	12	71
4 c	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	CH_{3}	CH_{3}	13	90
4d	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	CH_{3}	CH_{3}	14	89
4 e	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	CH_{3}	CH_{3}	10	76
4 f	$4-\mathrm{HOC}_{6} \mathrm{H}_{4}$	CH_{3}	CH_{3}	8	86
4g	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	CH_{3}	CH_{3}	12	89
4h	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	CH_{3}	CH_{3}	20	91
4 i	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	CH_{3}	CH_{3}	8	74
4j	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	CH_{3}	H	12	95
4k	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	CH_{3}	H	18	86
41	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	CH_{3}	H	16	97
4 m	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	CH_{3}	H	20	95
4n	$4-\mathrm{HOC}_{6} \mathrm{H}_{4}$	CH_{3}	H	20	96
40	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	CH_{3}	H	20	92
4p	3-Pyridyl	CH_{3}	H	14	86
4q	4-Pyridyl	CH_{3}	H	12	88
4 r	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	H	H	15	82
4s	$2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	H	H	10	90
4 t	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	H	H	9	96
4u	4- $\mathrm{FC}_{6} \mathrm{H}_{4}$	H	H	12	92
4v	$3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	H	H	8	77
4w	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	H	H	10	97
4x	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	H	10	80
$4 y$	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	H	H	4	94
4z	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	H	16	80

Similarly, the reaction of aldehyde 1, malononitrile 2 and 2,4-diamino-6-hydroxypyrimidine $\mathbf{5}$ in the same reaction conditions afforded 2,7-diamino-3,4-dihydro-4-
oxo-5-arylpyrido[2,3-d]-pyrimidine-6-carbonitrile 6 (Scheme 2) and the results are summarized in Table 3.

Scheme 2

Table 3
Synthesis of pyrido[2,3- d]pyrimidine derivatives $\mathbf{6}$ in aqueous medium

Entry	R	Time (h)	Yield (\%)
$\mathbf{6 a}$	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	6	93
$\mathbf{6 b}$	$4-\mathrm{HOC}_{6} \mathrm{H}_{4}$	10	84
$\mathbf{6 c}$	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$	6	80
$\mathbf{6 d}$	$2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	5	76
$\mathbf{6 e}$	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	8	78
$\mathbf{6 f}$	$3,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	7	81
$\mathbf{6 g}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	6	86
$\mathbf{6 h}$	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	10	77

However, the reaction of aldehyde 1, methyl cyanoacetate $\mathbf{7}$ and 2,4-diamino-6-hydroxypyrimidine $\mathbf{5}$ in the same reaction conditions afforded 2 -amino-3,4,7,8-tetra-hydro-4,7-dioxo-5-arylpyrido[2,3-d]pyrimidine-6-carbonitrile 8, which is different from the reaction reported by Bhuyan et al. [9]. The desired product methyl 2,7-diamino-3,4-dihydro-4-oxo-5-arylpyrido[2,3-d]pyrim-idine-6-carboxy late 9 was not obtained (Scheme 3). The results are summarized in Table 4. Recently, Tu et al. [17] reported a three-component synthesis of compound $\mathbf{8}$ under microwave irradiation. The spectra data of $\mathbf{8 g}$ are matching the literature data.

Scheme 3

Table 4
Synthesis of pyrido[2,3- d] pyrimidine derivatives $\mathbf{8}$ in aqueous medium

Entry	R	Time (h)	Yield (\%)
$\mathbf{8 a}$	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	12	96
$\mathbf{8 b}$	$3,4-\mathrm{Cl}_{2} \mathbf{C}_{6} \mathrm{H}_{3}$	12	91
$\mathbf{8 c}$	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	16	92
$\mathbf{8 d}$	$2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	16	90
$\mathbf{8 e}$	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	8	95
$\mathbf{8 f}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	11	89
$\mathbf{8 g}$	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	8	89
$\mathbf{8 h}$	$\left.3,4-\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	9	87
$\mathbf{8 i}$	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	8	95
$\mathbf{8 j}$	$3-\mathrm{Pyridyl}^{2}$	10	93

All the products 4, 6 and $\mathbf{8}$ were characterized by IR, ${ }^{1} \mathrm{H}$ NMR and elemental analysis. The structure of $\mathbf{4 g}$ was further confirmed by single crystal X-ray diffraction analysis. Figure 1 shows the molecular structure of $\mathbf{4 g}$. The crystallographic data of this compound is summarized in Table 5.

Figure 1. X-ray structure of $\mathbf{4 g}$.

Table 5

Crystallographic Data for $\mathbf{4 g}$

Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{4}$
Formula weight	352.32
Wave length (\AA))	0.71070
Crystal system	Monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
$\mathrm{a}(\AA \AA)$	$9.6209(9)$
$\mathrm{b}(\AA \AA)$	$11.7064(12)$
$\mathrm{c}(\AA \AA)$	$14.5493(16)$
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	$106.939(3)$
$\gamma\left({ }^{\circ}\right)$	90
$\mathrm{~V}\left(\AA^{3}\right)$	$1567.5(3)$
Z	4
Dcalc. $\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.493
Absorption coefficient $\left(\mathrm{mm}^{-1}\right)$	0.112
$\mathrm{~F}(000)$	728
Crystal size (mm)	$0.60 \times 0.40 \times 0.32$
θ Range $\left({ }^{\circ}\right)$	3.41 to 27.48
Limiting indices	$-12 \leq \mathrm{h} \leq 10$
	$-15 \leq \mathrm{k} \leq 14$
	$-18 \leq 1 \leq 18$
Reflections collected	17123
Independent reflections	3595
Data/restraints/parameters	$3595 / 0 / 246$
Goodness-of-fit on F^{2}	1.107
Final R indices $[I>2 \sigma(I)]$	$R_{1}=0.0458$
R indices (all data $)$	$\mathrm{w} R=0.1177$
Largest diff. Peak and hole $\left(\mathrm{e} \cdot \AA^{-3}\right)$	$R_{1}=0.0516$
	$\mathrm{w} R=0.1217$
	0.238 and -0.250

Though the detailed mechanism of these reactions has not been clarified yet, the formation of 4 can be explained by the possible mechanism presented in Scheme 4. The reaction occurs via an initial formation of the cyanoolefin, from the condensation of aldehyde and alkyl nitriles as shown in Scheme 4, which suffers nucleophilic attack to give the Michael adduct [A]. The intermediate [A] then cyclizes and subsequently losses a hydrogen molecule to afford the fully aromatized compound. This type of hydrogen loss is well documented [18].

Scheme 4

In conclusion, a series of pyrido[2,3-d]pyrimidine derivatives were synthesized via novel three-component reaction of aldehyde, alkyl nitrile and aminopyrimidine in water in the presence of TEBAC. Compared to other methods, this new method has the advantages of high yields, mild reaction conditions, easy work-up, inexpensive reagents and an environmentally friendly procedure.

EXPERIMENTAL

Melting points were determined in open capillaries and are uncorrected. IR spectra were measured on a FTIR-8101 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured on an Inova-400 MHz spectrometer using TMS as internal standard, DMSO- d_{6} as solvent. Microanalyses were carried out on Perkin-Elmer 2400 II instruments. X-ray diffraction was recorded on a Rigaku Mercury diffractometer.

General Procedure for the Synthesis of pyrido[2,3-d]pyrimidine derivatives 4. A suspension of a mixture of aldehyde $\mathbf{1}$ (2 mmol), malononitrile 2 (2 mmol), 6-aminouracile 3 (2 mmol) and TEBAC $(0.15 \mathrm{~g})$ was stirred in water $(10 \mathrm{~mL})$ at $90^{\circ} \mathrm{C}$ for several hours. After completion monitored by TLC, the reaction mixture was allowed to cool to room temperature. The crystalline powder formed recrystallized from DMF to give pure 4.
7-Amino-1,3-dimethyl-2,4-dioxo-5-(4-chlorophenyl)pyrido-[2,3-d]pyrimidine-6-carbonitrile (4a). This compound was obtained as solid with $\mathrm{mp} 280-281^{\circ} \mathrm{C}$; ir (potassium bromide): $3416,3314,3220,2215,1715,1667,1623,1573,1549,1508$, $1494,1439,1369,1278,1229,1165,1014,974,847,831,805$, $753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 3.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.51(\mathrm{~s}, 3 \mathrm{H}$,
CH_{3}), $7.28(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.51(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 7.92 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$). Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{O}_{2}$: C, 56.23 ; H, 3.54; N, 20.49. Found: C, 56.38; H, 3.41; N, 20.64.

7-Amino-1,3-dimethyl-2,4-dioxo-5-(2-nitrophenyl)pyrido-[2,3-d]pyrimidine-6-carbonitrile (4b). This compound was obtained as solid with $\mathrm{mp} 290-291{ }^{\circ} \mathrm{C}$; ir (potassium bromide): $3459,3350,3233,2221,1708,1668,1636,1578,1522,1439$, $1371,1347,1310,1278,1234,1146,1102,1060,973,850,804$, 788, 769, 749, 735, $720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(D M S O-\mathrm{d}_{6}\right.$): $\delta 3.06$ (s, 3H, CH_{3}), 3.53 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 7.43 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.74-$ $7.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.87-7.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, 8.32 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$). Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{4}: \mathrm{C}$, 54.55; H, 3.43; N, 23.85. Found: C, 54.73; H, 3.26; N, 23.68.

7-Amino-1,3-dimethyl-2,4-dioxo-5-(4-methylphenyl)pyrido-[2,3-d]pyrimidine-6-carbonitrile (4c). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3457, 3310, 3219, 2212, 1715, 1667, 1621, 1562, 1508, 1439, 1368, 1307, 1278, 1229, 1096, 960, 825, 805, $754 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d ${ }^{\text {) }}$) 2.38 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 3.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 3.51 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}), $7.11(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.23(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 7.83 (s, $2 \mathrm{H}, \mathrm{NH}_{2}$). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 63.54; H, 4.71; N, 21.79. Found: C, 63.85; H, 4.61; N, 21.94.

7-Amino-1,3-dimethyl-2,4-dioxo-5-(3-nitrophenyl)pyrido-[2,3-d]pyrimidine-6-carbonitrile (4d). This compound was obtained as solid with $\mathrm{mp} 298-299{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3460, 3337, 3235, 3093, 2225, 1713, 1668, 1638, 1565, 1530, $1442,1393,1368,1350,1280,1231,1095,1068,981,805,752$, $722,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right): 3.09$ (s, 3H, CH ${ }_{3}$), 3.53 (s , $3 \mathrm{H}, \mathrm{CH}_{3}$), 7.76-7.80 (m, 2H, ArH), 7.96 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$), 8.18 (s , $1 \mathrm{H}, \mathrm{ArH}), 8.32-8.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{4}$: C, 54.55; H, 3.43; N, 23.85. Found: C, 54.81; H, 3.24; N, 23.97.

7-Amino-1,3-dimethyl-2,4-dioxo-5-(3-chlorophenyl)pyrido-[2,3-d]pyrimidine-6-carbonitrile (4e). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$; ir (potassium bromide): 3465, 3337, 3235, 3074, 2224, 1712, 1674, 1638, 1558, 1509, $1481,1436,1416,1367,1307,1279,1228,1090,980,898,808$, $789,753,710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\right.$ DMSO-d $\left.{ }_{6}\right): 3.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.52$ (s, 3H, CH 3), 7.21-7.22 (m, 1H, ArH), 7.34 (s, 1H, ArH), 7.45$7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.90\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{O}_{2}$: C, 56.23; H, 3.54; N, 20.49. Found: C, $56.40 ; \mathrm{H}$, 3.32; N, 20.27.

7-Amino-1,3-dimethyl-2,4-dioxo-5-(4-hydroxyphenyl)pyrido-[2,3- d]pyrimidine-6-carbonitrile (4f). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$; ir (potassium bromide): 3465, 3309, 3140, 2958, 2217, 1710, 1654, 1612, 1574, 1514, 1436, 1372, 1269, 1226, 1172, 1098, 1066, 974, 839, 823, 806, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d d_{6} : 3.10 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 3.50 (s, 3 H , CH_{3}), 6.79 (d, J = 8.0 Hz, 2H, ArH), $7.05(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArH}), 7.77\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, 59.44; H, 4.05; N, 21.66. Found: C, 59.68; H, 3.81; N, 21.74.

7-Amino-1,3-dimethyl-2,4-dioxo-5-(4-nitrophenyl)pyrido-[2,3- d] pyrimidine-6-carbonitrile (4g). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3457 , 3342, 3112, 2225, 1718, 1654, 1559, 1512, 1431, 1373, 1342, 1286, 1252, 1216, 1148, 1093, 1070, 1014, 975, 860, 847, 811, 785, 753, 728, $694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(D M S O-\mathrm{d}_{6}\right): 3.08$ (s, 3H, CH_{3}), $3.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.57(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.02(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NH}_{2}$), $8.32(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{4}$: C, 54.55 ; H, 3.43; N, 23.85. Found: C, 54.72; H, 3.29; N, 23.60.

7-Amino-1,3-dimethyl-2,4-dioxo-5-(4-methoxyphenyl)pyrido-[2,3-d]pyrimidine-6-carbonitrile (4h). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3458, 3306, 3218, 2213, 1716, 1666, 1616, 1580, 1509, 1439, 1366, 1292, 1254, 1178, 1096, 1064, 1034, 973, 932, 838, 807, $770,754,725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right)$) 3.09 (s, 3H, CH ${ }_{3}$), 3.51 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 3.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), $6.98(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.18(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, $60.53 ; \mathrm{H}, 4.48 ; \mathrm{N}, 20.76$. Found: C, $60.75 ; \mathrm{H}$, 4.58; N, 20.57.

7-Amino-1,3-dimethyl-2,4-dioxo-5-(4-bromophenyl)pyrido-[2,3- $\boldsymbol{d}]$ pyrimidine-6-carbonitrile (4i). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$; ir (potassium bromide): 3460, 3313, 3220, 2960, 2215, 1714, 1660, 1623, 1568, 1547, $1509,1492,1438,1369,1278,1229,1164,1096,1011,973$, $830,805,753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d d_{6}): 3.09 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 3.51 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $7.21(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArH}), 7.64(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}), 7.90\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrN}_{5} \mathrm{O}_{2}: \mathrm{C}$, 49.76; H, 3.13; N, 18.13. Found: C, 49.51; H, 3.26; N, 18.37.

7-Amino-1-methyl-2,4-dioxo-5-(3-chlorophenyl)pyrido[2,3-d]pyrimidine-6-carbonitrile (4j). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$; ir (potassium bromide): 3392, 3295, 3165, 3032, 2845, 2217, 1702, 1650, 1618, 1558, 1513, 1483, $1439,1411,1373,1242,1204,1190,1100,1085,1054,868$, 803, 784, $693 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right)$) 3.44 (s, 3H, CH ${ }_{3}$), $7.20-$ $7.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.44-7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.87 (s, 2H, NH_{2}), $11.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClN}_{5} \mathrm{O}_{2}$: C, 54.97; H, 3.08; N, 21.37. Found: C, 55.08; H, 3.12; N, 21.15.

7-Amino-1-methyl-2,4-dioxo-5-(4-bromophenyl)pyrido-[2,3-d]pyrimidine-6-carbonitrile (4k). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3459, 3334, 3179, 3043, 2832, 2223, 1721, 1681, 1633, 1575, 1550, 1507, 1484, 1451, 1434, 1379, 1371, 1303, 1238, 1189, 1073, 1010, 990, 963, 877, 828, 806, 793, 774, $667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): 3.43 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 7.22 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.63(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.90\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 11.22(\mathrm{~s}, 1 \mathrm{H}$, NH). Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrN}_{5} \mathrm{O}_{2}: \mathrm{C}, 48.41 ; \mathrm{H}, 2.71 ; \mathrm{N}$, 18.82. Found: C, $48.67 ;$ H, $2.50 ;$ N, 18.69.

7-Amino-1-methyl-2,4-dioxo-5-(3-nitrophenyl)pyrido[2,3-d]-pyrimidine-6-carbonitrile (41). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3455, 3347, 3224, 3081, 2811, 2229, 1699, 1629, 1562, 1445, 1359, 1241, 1206, 1051, 848, 817, 800, 753, 736, 701, $686 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): $3.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.74-7.77$ (m, 2H, ArH), 7.96 (s , $2 \mathrm{H}, \mathrm{NH}_{2}$), $8.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.31-8.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 11.28(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{4}$: C, 53.26; H, 2.98; N, 24.84. Found: C, 53.52; H, 2.77; N, 24.68.

7-Amino-1-methyl-2,4-dioxo-5-(4-methoxyphenyl)pyrido-[2,3-d]pyrimidine-6-carbonitrile (4m). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3482, 3351, 3189, 3064, 2835, 2214, 1709, 1671, 1613, 1575, 1557, 1512, 1459, 1427, 1368, 1309, 1292, 1254, 1231, 1201, 1175, 1114, 1077, 1049, 1025, 963, 837, 798, 779, 754, 705, 669 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d d_{6} : 3.43 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 3.82 (s, 3 H , $\left.\mathrm{CH}_{3} \mathrm{O}\right), 6.97(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.19(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), $7.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 11.13$ (s, 1H, NH). Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, 59.44; H, 4.05; N, 21.66. Found: C, 59.61; H, 3.94; N, 21.79.

7-Amino-1-methyl-2,4-dioxo-5-(4-hydroxyphenyl)pyrido-[2,3-d]pyrimidine-6-carbonitrile (4n). This compound was
obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3433 , $3334,3224,3071,2222,1703,1635,1610,1560,1516$, $1437,1373,1271,1241,1204,1175,1105,882,843,805 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right): 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.78(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 7.06 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.75 (s, 2H, NH2), 9.60 (s , $1 \mathrm{H}, \mathrm{OH}$), 11.10 (s, 1H, NH). Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, 58.25; H, 3.58; N, 22.64. Found: C, 58.10; H, 3.74; N, 22.83.

7-Amino-1-methyl-2,4-dioxo-5-(4-nitrophenyl)pyrido[2,3-d]-pyrimidine-6-carbonitrile (40). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$; ir (potassium bromide): 3414,3329 , 3238, 3048, 2836, 2223, 1727, 1678, 1639, 1558, 1515, 1442, 1374, 1351, 1287, 1239, 1205, 1107, 1051, 1014, 967, 887, 859, 847, 806, 753, 719, $692 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right.$): 3.44 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}), $7.58\left(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right.$), $8.00\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 8.30(\mathrm{~d}$, $\mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 11.32 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$). Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{4}$: C, 53.26; H, 2.98; N, 24.84. Found: C, 53.47; H, 2.76; N, 24.63.

7-Amino-1-methyl-2,4-dioxo-5-(3-pyridyl)pyrido[2,3-d]-pyrimidine-6-carbonitrile (4p). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$; ir (potassium bromide): 3490,3323 , 3222, 3050, 2219, 1694, 1650, 1561, 1514, 1442, 1413, 1374, 1246, 1208, 1061, 1041, 960, 827, 806, 791, 754, $709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ $\mathrm{nmr}\left(\mathrm{DMSO}_{6}\right): 3.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.74-7.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.96 (s, 2H, NH 2), 8.19 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 8.31 (d, J = $7.2 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 11.27 (s, 1H, NH). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2}: \mathrm{C}, 57.14$; H, 3.43; N, 28.56. Found: C, 57.29; H, 3.25; N, 28.63.
7-Amino-1-methyl-2,4-dioxo-5-(4-pyridyl)pyrido[2,3- d]-pyrimidine-6-carbonitrile (4q). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$; ir (potassium bromide): 3384,3318 , 3166, 3052, 2219, 1703, 1667, 1567, 1530, 1509, 1437, 1369, 1310, 1243, 1220, 1205, 1182, 1073, 1055, 1004, 960, 889, 836, 806, 790, $757 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right.$): 3.44 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 7.29 $(\mathrm{d}, \mathrm{J}=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 8.64(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}$), 11.28 (s, 1H, NH). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2}: \mathrm{C}$, 57.14; H, 3.43; N, 28.56. Found: C, 57.24; H, 3.59; N, 28.36.

7-Amino-2,4-dioxo-5-butylpyrido [2,3-d]pyrimidine-6carbonitrile (4r). This compound was obtained as solid with mp $>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3384, 3329, 3170, 2954, 2810, 2229, 1697, 1654, 1606, 1556, 1448, 1436, 1376, 1259, 1187, 1156, 1023, 822, 800, 756, $720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\right.$ DMSO- d_{6}): 0.93 (t, J = $7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.38-1.54 (m, 4H, $2 \times \mathrm{CH}_{2}$), 3.21 (t, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $7.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 11.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, $11.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, $55.59 ; \mathrm{H}$, 5.05; N, 27.01. Found: C, 55.72; H, 4.95; N, 27.27.

7-Amino-2,4-dioxo-5-(2,4-dichlorophenyl)pyrido[2,3-d]-pyrimidine-6-carbonitrile (4s). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$; ir (potassium bromide): 3385,3334 , 3156, 3081, 2924, 2820, 2223, 1717, 1651, 1636, 1598, 1560, $1485,1440,1383,1306,1257,1205,1145,1100,1056,1026$, 906, 877, 826, 802, 756, $711 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right.$ - $): 7.36$ (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.52(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.74(\mathrm{~s}, 1 \mathrm{H}$, ArH), $7.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 11.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 48.30; H, 2.03; N, 20.12. Found: C, 48.45; H, 2.09; N, 20.37.

7-Amino-2,4-dioxo-5-(4-bromophenyl)pyrido[2,3-d]pyrim-idine-6-carbonitrile (4t). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): $3400,3329,3172$, 3080, 2931, 2803, 2221, 1716, 1698, 1645, 1592, 1545, 1491, 1441, 1410, 1374, 1298, 1264, 1199, 1143, 1105, 1073, 1014, 876, 801, 768, $706 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): 7.24(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.62(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$,
$10.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{BrN}_{5} \mathrm{O}_{2}: \mathrm{C}, 46.95 ; \mathrm{H}, 2.25 ; \mathrm{N}, 19.55$. Found: C, $47.08 ; \mathrm{H}$, 2.11; N, 19.36 .

7-Amino-2,4-dioxo-5-(4-fluorophenyl)pyrido[2,3- d]pyrimi-dine-6-carbonitrile ($\mathbf{4 u}$). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3362, 3334, 3147, 3015, 2802, 2229, 1734, 1703, 1674, 1646, 1606, 1566, 1512, 1440, 1387, 1302, 1224, 1160, 1097, 1028, 877, 832, 808, 756 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): 7.24-7.27 (m, 2H, ArH), 7.30-7.35 (m, 2H, ArH), $7.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 10.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.48$ (s, $1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{FN}_{5} \mathrm{O}_{2}$: C, 56.57 ; $\mathrm{H}, 2.71$; N, 23.56. Found: C, $56.70 ; \mathrm{H}, 2.52$; N, 23.38 .

7-Amino-2,4-dioxo-5-(3,4-dichlorophenyl)pyrido[2,3-d]-pyrimidine-6-carbonitrile (4v). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$; ir (potassium bromide): 3396, 3328, 3187, 3090, 2818, 2223, 1715, 1699, 1645, 1592, 1560, 1478, 1440, 1372, 1302, 1261, 1203, 1138, 1103, 1033, 947, 899, 803, $733,702,685 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right): 7.30(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.63 (s, 1H, ArH), 7.71 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.74 (s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $11.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 48.30; H, 2.03; N, 20.12. Found: C, 48.44; H, 2.17; N, 20.02.

7-Amino-2,4-dioxo-5-(3-nitrophenyl)pyrido[2,3-d]pyrimi-dine-6-carbonitrile (4w). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$; ir (potassium bromide): 3401, 3326, 3188, 3090, 2803, 2227, 1724, 1702, 1646, 1598, 1560, 1532, 1485, 1447, 1370, 1340, 1304, 1205, 1099, 1030, 924, 847, 803, 737, $703,682 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right): 7.74-7.81(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}$ and $\left.\mathrm{NH}_{2}\right), 8.21-8.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.30-8.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 11.02$ (s, $1 \mathrm{H}, \mathrm{NH}$), $11.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}_{4}: \mathrm{C}$, 51.86; H, 2.49; N, 25.92. Found: C, 51.95; H, 2.23; N, 25.78.

7-Amino-2,4-dioxo-5-(2-chlorophenyl)pyrido[2,3-d]pyrimi-dine-6-carbonitrile ($\mathbf{4 x}$). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): $3386,3325,3164$, 2921, 2223, 1717, 1673, 1648, 1598, 1563, 1484, 1439, 1381, $1306,1258,1204,1154,1100,1057,1028,808,763,707 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): ~ 7.28-7.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.39-7.46(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{ArH}), 7.52-7.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 11.01(\mathrm{~s}, 1 \mathrm{H}$, NH), $11.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{ClN}_{5} \mathrm{O}_{2}$: C, 53.60 ; H, 2.57; N, 22.33. Found: C, 53.52; H, 2.46; N, 22.57.

7-Amino-2,4-dioxo-5-(4-nitrophenyl)pyrido[2,3-d $]$ pyrimi-dine-6-carbonitrile (4y). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): $3609,3535,3321$, 3199, 3081, 2848, 2227, 1706, 1666, 1589, 1553, 1522, 1450, 1381, 1348, 1208, 1151, 1108, 1018, 926, 887, 852, 812, 770, $750,696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right): 7.59(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), $7.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 8.29(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 11.03 (s, $1 \mathrm{H}, \mathrm{NH}$), 11.56 (s, 1H, NH). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}_{4}$: C, 51.86; H, 2.49; N, 25.92. Found: C, 51.98; H, 2.31; N, 26.02.

7-Amino-2,4-dioxo-5-(4-chlorophenyl)pyrido[2,3- d]pyrimi-dine-6-carbonitrile (4z). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3398, 3330, 3169 , 3090, 2224, 1706, 1645, 1590, 1556, 1495, 1442, 1409, 1375, 1299, 1260, 1200, 1144, 1092, 1018, 877, 803, 771, $680 \mathrm{~cm}^{-1}$; 7.30 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.48 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.66 (s, 2H, NH 2), 10.95 (s, 1H, NH), 11.47 (s, 1H, NH). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{ClN}_{5} \mathrm{O}_{2}$: C, $53.60 ; \mathrm{H}, 2.57$; N, 22.33. Found: C, 53.47; H, 2.39; N, 22.46.

General Procedure for the Synthesis of pyrido $[2,3-d]$ pyrimidine derivatives 6. A suspension of a mixture of aldehyde $\mathbf{1}$ (2 mmol), malononitrile 2 (2 mmol), 2,4-diamino-6-
hydroxypyrimid-ine $5(2 \mathrm{mmol})$ and TEBAC $(0.15 \mathrm{~g})$ was stirred in water (10 mL) at $90^{\circ} \mathrm{C}$ for several hours. After completion monitored by TLC, the reaction mixture was allowed to cool to room temperature. The crystalline powder formed recrystallized from DMF to give pure 6 .
2,7-Diamino-3,4-dihydro-4-oxo-5-(4-nitrophenyl)pyrido-[2,3-d]pyrimidine-6-carbonitrile (6a). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$; ir (potassium bromide): 3446, 3343, 3187, 2170, 1670, 1550, 1515, 1472, 1439, 1385, 1346, 1301, 1216, 1106, 916, 885, 851, 816, $742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): 6.95 (s, 2H, NH $)_{2}$), 7.35 (s, 2H, NH2), 7.55 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 8.26 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 10.70 (s, 1 H , $\mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{7} \mathrm{O}_{3}$: C, 52.02; H, 2.81; N, 30.33. Found: C, 52.25; H, 2.67; N, 30.59.

2,7-Diamino-3,4-dihydro-4-oxo-5-(4-hydroxyphenyl)pyrido-[2,3-d]pyrimidine-6-carbonitrile (6b). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3381, 3181, 3140, 2800, 2213, 1696, 1667, 1636, 1613, 1549, $1515,1425,1388,1309,1266,1223,1196,1173,1106,917$, 877, $835,813 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\right.$ DMSO-d $\left._{6}\right): 6.75(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 6.91 (s, 2H, NH $)_{2}$), 7.04 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.08 (s , $2 \mathrm{H}, \mathrm{NH}_{2}$), $9.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 10.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2}$: C, 57.14; H, 3.43; N, 28.56. Found: C, 57.36; H, 3.24; N, 28.70.

2,7-Diamino-3,4-dihydro-4-oxo-5-(2-chlorophenyl)pyrido-[2,3-d]pyrimidine-6-carbonitrile (6c). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3463, 3333, 3177, 2189, 1661, 1556, 1458, 1389, 1300, 1205, 1135, 1035, 811, 786, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): 6.92 (s , $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.25-7.28 (m, 1H, ArH), 7.33 (s, 2H, NH2), 7.36-7.44 (m, 2H, ArH), 7.50-7.52 (m, 1H, ArH), 10.78 (s, 1H, NH). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClN}_{6} \mathrm{O}$: C, 53.77; H, 2.90; N, 26.87. Found: C, 53.85; H, 2.73; N, 26.69.

2,7-Diamino-3,4-dihydro-4-oxo-5-(2,4-dichlorophenyl)-pyrido[2,3-d]pyrimidine-6-carbonitrile (6d). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$; ir (potassium bromide): 3368, 3190, 3098, 2886, 2222, 1673, 1626, 1555, 1479, 1433, 1340, 1199, 1143, 1104, 1054, 921, 878, 816, $797 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): 6.90 (s, 2H, NH $)^{2}$), 7.33 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.49(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.70(\mathrm{~s}, 1 \mathrm{H}$, ArH), 10.76 (s, $1 \mathrm{H}, \mathrm{NH}$). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}$, 48.44; H, 2.32; N, 24.21. Found: C, 48.61; H, 2.16; N, 24.42.

2,7-Diamino-3,4-dihydro-4-oxo-5-(4-bromophenyl)pyrido-[2,3-d]pyrimidine-6-carbonitrile (6e). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3389, 3330, 3197, 3150, 3078, 2214, 1685, 1667, 1615, 1546, $1489,1428,1309,1195,1071,1012,916,876,810 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): 6.62 (s, 2H, NH $)_{2}$), 7.21 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.28\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.59(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 10.70(\mathrm{~s}, 1 \mathrm{H}$, NH). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{6} \mathrm{O}: \mathrm{C}, 47.08 ; \mathrm{H}, 2.54$; N, 23.53. Found: C, 47.23; H, 2.37; N, 23.66.

2,7-Diamino-3,4-dihydro-4-oxo-5-(3,4-dimethylphenyl)-pyrido[2,3- d]pyrimidine-6-carbonitrile ($6 f$). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$; ir (potassium bromide): 3510, 3407, 3195, 3031, 2878, 2206, 1694, 1665, 1612, 1547, 1500, 1472, 1423, 1306, 1188, 1099, 961, 878, 832, $811 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ nmr (DMSO-d ${ }_{6}$): $2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.78$ (s , $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.93 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.98 (s, 1H, ArH), 7.11-7.17 (m, 3H, NH_{2} and ArH), 10.56 (s, 1H, NH). Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}, 62.74 ; \mathrm{H}, 4.61$; N, 27.44. Found: C, 62.91; H, 4.58; N, 27.64.

2,7-Diamino-3,4-dihydro-4-oxo-5-(4-chlorophenyl)pyrido-[2,3-d]pyrimidine-6-carbonitrile (6g). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3501, 3394, 3318, 3056, 2214, 1681, 1668, 1615, 1549, 1492, 1428, 1309, 1195, 1088, 1016, 916, 877, 812, $683 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): $6.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.27(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArH}$), $7.45(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 10.64(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClN}_{6} \mathrm{O}: \mathrm{C}, 53.77 ; \mathrm{H}, 2.90 ; \mathrm{N}, 26.87$. Found: C, 53.86; H, 2.73; N, 26.59.

2,7-Diamino-3,4-dihydro-4-oxo-5-butylpyrido[2,3-d]pyrimi-dine-6-carbonitrile ($\mathbf{6 h}$). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C} ; 3401,3341,3118,2959,2215,1697,1665$, 1617, 1556, 1467, 1429, 1397, 1367, 1258, 1205, 1193, 1128, 1054, 1028, 855, 815, $736 \mathrm{~cm}^{-1}$; 0.94 (t, J = $7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.37-1.55 (m, 4H, $2 \times \mathrm{CH}_{2}$), 3.22 (t, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 6.74 (s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.06 (s, 2H, NH2), 10.72 (s, 1H, NH). Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}, 55.80 ; \mathrm{H}, 5.46 ; \mathrm{N}, 32.54$. Found: C, $55.63 ; \mathrm{H}$, 5.38; N, 32.69.

General Procedure for the Synthesis of pyrido[2,3-d]pyrimidine derivatives 8. A suspension of a mixture of aldehyde 1 (2 mmol), methyl cyanoacetate 7 (2 mmol), 2,4-diamino-6-hydroxypyrimidine $5(2 \mathrm{mmol})$ and TEBAC $(0.15 \mathrm{~g})$ was stirred in water (10 mL) at $90^{\circ} \mathrm{C}$ for several hours. After completion monitored by TLC, the reaction mixture was allowed to cool to room temperature. The crystalline powder formed recrystallized from DMF to give pure 8 .

2-Amino-3,4,7,8-tetrahydro-4,7-dioxo-5-(4-methylphenyl)pyrido $[2,3-d$] pyrimidine-6-carbonitrile (8a). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$; 3348, 3130, 2225, 1714, 1671, 1617, 1575, 1545, 1471, 1368, 1255, 1165, 1059, 916, 880, 797, 729, $683 \mathrm{~cm}^{-1} ; 2.36$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 6.68 ($\mathrm{s}, 2 \mathrm{H}$, NH_{2}), 7.13 ($\mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.21(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), $10.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 12.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 61.43; H, 3.78; N, 23.88. Found: C, 61.58; H, 3.61; N, 23.73.

2-Amino-3,4,7,8-tetrahydro-4,7-dioxo-5-(3,4-dichlorol-phenyl)pyrido[2,3-d]pyrimidine-6-carbonitrile (8b). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C} ; 3326,3129$, 2226, 1715, 1668, 1573, 1561, 1467, 1382, 1250, 1200, 1172, 1132, 1104, 1032, 944, 878, 794, 718, $686 \mathrm{~cm}^{-1} ; 6.72(\mathrm{~s}, 2 \mathrm{H}$, NH_{2}), $7.29\left(\mathrm{dd}, \mathrm{J}_{1}=2.0 \mathrm{~Hz}, \mathrm{~J}_{2}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.60(\mathrm{~d}, \mathrm{~J}=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.69(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 10.96(\mathrm{~s}, 1 \mathrm{H}$, NH), 12.41 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}: \mathrm{C}$, 48.30; H, 2.03; N, 20.12. Found: C, 48.52; H, 1.96; N, 20.35.

2-Amino-3,4,7,8-tetrahydro-4,7-dioxo-5-(3-chlorolphenyl)pyrido $[2,3-d$] pyrimidine- 6 -carbonitrile (8 c). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$; ir (potassium bromide): 3392, 3132, 2228, 1713, 1669, 1620, 1573, 1541, 1466, 1365, 1252, 1196, 1163, 1083, 938, 877, 803, 784, 728, $689 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ $\mathrm{nmr}\left(\mathrm{DMSO}_{6}\right): 6.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.22-7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, 7.35-7.36 (m, 1H, ArH), 7.42-7.48 (m, 2H, ArH), 10.91 (s, 1H, NH), 12.39 (s, $1 \mathrm{H}, \mathrm{NH}$). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{ClN}_{5} \mathrm{O}_{2}$: C, 53.60; H, 2.57; N, 22.33. Found: C, 53.81; H, 2.44; N, 22.48.

2-Amino-3,4,7,8-tetrahydro-4,7-dioxo-5-(2,4-dichlorol-phenyl)pyrido[2,3- d]pyrimidine-6-carbonitrile (8d). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3333, 3103, 2227, 1712, 1682, 1636, $1583,1559,1470,1384,1247,1201,1173,1102,1055,919$, $877,801,754,727 \mathrm{~cm}^{-1} ; 6.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.35(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.50\left(\mathrm{dd}, \mathrm{J}_{1}=2.0 \mathrm{~Hz}, \mathrm{~J}_{2}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.71(\mathrm{~d}$, $\mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 11.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 12.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 48.30; H, 2.03; N, 20.12. Found: C, 48.49; H, 2.15; N, 20.36 .

2-Amino-3,4,7,8-tetrahydro-4,7-dioxo-5-(4-bromophenyl)pyrido $[2,3-d]$ pyrimidine-6-carbonitrile (8e). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Lit. [17] $\mathrm{mp}>300^{\circ} \mathrm{C}$); ir (potassium bromide): 3341, 3154, $3088,2225,1717,1676$, 1617, 1561, 1473, 1369, 1257, 1166, 1073, 1012, 915, 897, 820, 798, 731, $684 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right): 6.72$ (s, 2H, NH ${ }_{2}$), 7.23 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.61 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 10.92 (s, $1 \mathrm{H}, \mathrm{NH}$), $12.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{BrN}_{5} \mathrm{O}_{2}$: C, 46.95; H, 2.25; N, 19.55. Found: C, 47.10; H, 2.08; N, 19.72.
2-Amino-3,4,7,8-tetrahydro-4,7-dioxo-5-phenylpyrido[2,3- d]-pyrimidine-6-carbonitrile ($\mathbf{8 f}$). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3305,3114 , 2219, 1699, 1659, 1578, 1545, 1470, 1438, 1379, 1254, 1198, 1170, 1152, 1106, 913, 895, 804, 761, 736, 721, 701, $667 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{\mathrm{d}}\right)$: $6.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.23-7.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.38-7.40 (m, 3H, ArH), 10.89 (s, 1H, NH), 12.34 (s, 1H, NH). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, $60.21 ; \mathrm{H}, 3.25 ; \mathrm{N}, 25.08$. Found: C, 60.46; H, 3.21; N, 25.24.
2-Amino-3,4,7,8-tetrahydro-4,7-dioxo-5-(4-methoxyphenyl)pyrido $[2,3-d$] pyrimidine-6-carbonitrile (8 g). This compound was obtained as solid with $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Lit. [17] $\mathrm{mp}>300^{\circ} \mathrm{C}$); ir (potassium bromide): 3376, 3132, 2225, 1714, 1674, 1629, $1605,1575,1545,1518,1469,1368,1303,1254,1180,1116$, 1060, 1027, 915, 879, 800, 756, 733, $685 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSOd_{6}): 3.81 (s, 3H, CH3 3), $6.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.94(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}$), 7.19 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 10.91 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), $12.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{3}: \mathrm{C}, 58.25 ; \mathrm{H}$, 3.58; N, 22.64. Found: C, 58.12; H, 3.68; N, 22.85.

2-Amino-3,4,7,8-tetrahydro-4,7-dioxo-5-(3,4dimethyl-phenyl)pyrido[2,3- d] pyrimidine-6-carbonitrile (8 h). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3393, 3134, 2227, 1719, 1673, 1606, 1537, 1470, 1366, 1260, 1225, 1203, 1164, 1124, 1060, 960, 880, 800, 727, $681 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): 2.23$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.95(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.00 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 7.15 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 10.86 (s, $1 \mathrm{H}, \mathrm{NH}), 12.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{2}: \mathrm{C}$, 62.53 ; H, 4.26; N, 22.79. Found: C, 62.67; H, 4.12; N, 22.90.

2-Amino-3,4,7,8-tetrahydro-4,7-dioxo-5-(4-fluorophenyl)pyrido $[\mathbf{2}, 3-d]$ pyrimidine-6-carbonitrile (8i). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$ (Lit. [17] $\mathrm{mp}>300^{\circ} \mathrm{C}$); ir (potassium bromide): 3401, 3092, 2229, 1696, 1670, 1600, 1585, 1561, 1503, 1474, 1437, 1382, 1255, 1216, 1167, 1102, 1062, 1022, 917, 879, 838, 802, 760, 728, $691 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): 6.72 (s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.21-7.26 (m, 2H, ArH), 729-7.33 (m, 2H, ArH), 10.92 (s, $1 \mathrm{H}, \mathrm{NH}$), $12.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{FN}_{5} \mathrm{O}_{2}: \mathrm{C}$, 56.57; H, 2.71; N, 23.56. Found: C, 56.74; H, 2.45; N, 23.68.

2-Amino-3,4,7,8-tetrahydro-4,7-dioxo-5-(3-pyridyl)pyrido-[2,3- d]pyrimidine-6-carbonitrile ($\mathbf{8 j}$). This compound was obtained as solid with $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ir (potassium bromide): 3338, 3132, 2223, 1712, 1667, 1636, 1581, 1553, 1469, 1416, 1375, 1260, 1197, 1106, 1056, 1028, 916, 876, 798, 771, 724, $675 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): 6.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.45\left(\mathrm{dd}, \mathrm{J}_{1}=\right.$ $\left.4.8 \mathrm{~Hz}, \mathrm{~J}_{2}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.73(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, $8.47(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArH}), 8.59(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArH}), 10.96(\mathrm{~s}, 1 \mathrm{H}$, NH), $12.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}_{2}$: C, 55.72 ; H, 2.88; N, 29.99. Found: C, 55.93; H, 2.72; N, 30.07.

Acknowledgement. We are grateful to the National Natural Science Foundation of China (20472062 and 20672079), the

Natural Science Foundation of Jiangsu Province (BK2006048) and the Natural Science Foundation of Jiangsu Education Department (06KJA15007) for financial support.

REFERENCES AND NOTES

[1a] Bradshaw, T. K.; Hutchison, D. W. Chem. Soc. Rev. 1977, 6, 43; [b] Sasaki, T.; Minamoto, K.; Suzuki, T.; Yamashita, S. Tetrahedron 1980, 36, 865; [c] Prajapati, D.; Bhuyan, P. J.; Sandhu, J. S. J. Chem. Soc., Perkin Trans. I 1988 607; [d] Bhuyan, P. J.; Borah, H. N.; Sandhu, J. S. J. Chem. Soc., Perkin Trans. I 19993083.
[2a] Marumoto, R.; Furukawa, Y. Chem. Pharm. Bull. 1997, 25, 2974; [b] Griengl, R.; Wack, E.; Schwarz, W.; Streicher, W.; Rosenwirth, B.; Clercq, E. D. J. Med. Chem. 1987, 30, 1199; [c] Clercq, E. D.; Bernaerts, R. J. Biol. Chem. 1987, 262, 14905; [d] Jones, A. S.; Sayers, J. R.; Walker, R. T.; Clercq, E. D. J. Med. Chem. 1988, 31, 268; [e] Mitsuya, H.; Yarchoan, R.; Broder, S. Science 1990, 249, 1533; [f] Pontikis, R.; Monneret, C. Tetrahedron Lett. 1994, 35, 4351.
[3a] Heidelberger, C.; Arafield, F. J. Cancer Res. 1963, 23, 1226; [b] Baba, M.; Pauwels, R.; Herdwig, P.; Clercq, E. D.; Desmyster, J.; Vandepulfe, M. Biochem. Biophys. Res. Commun. 1987, 142, 128; [c] Clercq, E. D. J. Med. Chem. 1986, 29, 1561; [d] Clercq, E. D. Anticancer Res. 1986, 6, 549; [e] Jones, A. S.; Verhalst, G.; Walker, R. T. Tetrahedron Lett. 1979, 20, 4415.
[4a] Hirota, K.; Kitade, Y.; Senda, S.; Halat, M. J.; Watanabe, K. A.; Fox, J. J. J. Org. Chem. 1981, 46, 846; [b] Su, T. L.; Huang, J. T.; Burchanal, J. H.; Watanabe, K. A.; Fox, J. J. J. Med. Chem. 1986, 29, 709; [c] Prajapati, D. ; Sandhu, J. S. Synthesis 1988342.
[5a] Gangjee, A.; Adair, O.; Queener, S. F. J. Med. Chem. 1999, 42, 2447; [b]Gangjee, A. ; Vasudevan, A.; Queener, S. F. J. Med. Chem. 1996, 39, 1438; [c] Hamby, J. M.; Connolly Cleo, J. C.; Schroeder, M. C.; Winters, R. T.; Showalter, H. D. H.; Panek, R. L.; Major, T. C.; Olsewski, B.; Ryan, M. J.; Dahring, T.; Lu, G. H.; Keiser, J. A.; Aneesa, S. C.; Kraker, A. J.; Slintak, V.; Nelson, J. M.; Fry, D. W.; Bradford, L.; Hallak, H.; Doherty, A. M. J. Med. Chem. 1997, 40, 2296.
[6] Nasr, M. N.; Gineinah, M. M. Arch. Pharm. 2002, 335, 289.
[7] Broom, A. D.; Shim, J. L.; Anderson, C. L. J. Org. Chem. 1976, 41, 1095.
[8] Shim, J. L.; Neiss, R.; Broom, A. D. J. Org. Chem. 1972, 37, 578.
[9] Bhuyan, P.; Boruah, R. C.; Sandhu, J. S. J. Org. Chem. 1990, 55, 568.
[10] Devi, I.; Kumar, B. S. D.; Bhuyan, P. J. Tetrahedron Lett. 2003, 44, 8307.
[11] Strecker, A. Liebigs. Ann. Chem. 1850, 75, 27.
[12a] Nair, V.; Vinod, A. U.; Rajesh, C. J. Org. Chem. 2001, 66, 4427; [b] List, B.; Castello, C. Synlett 2001 1687; [c] Shestopalov, A. M.; Emeliyanova, Y. M.; Shestiopolov, A. A.; Rodinovskaya, L. A.; Niazimbetova, Z. I.; Evans, D. H. Org. Lett. 2002, 4, 423; [d] Bertozzi, F.; Gustafsson, M.; Olsson, R. Org. Lett. 2002, 4, 3147; [e] Yuan, Y.; Li, X.; Ding, K. Org. Lett. 2002, 4, 3309; [f] Bagley, M. C.; Cale, J. W.; Bower, J. Chem. Commun. 2002 1682; [g] Cheng, J. F.; Chen, M.; Arthenius, T.; Nadzen, A. Tetrahedron Lett. 2002, 43, 6293; [h] Huma, H. Z. S.; Halder, R.; Kalra, S. S.; Das, J.; Iqbal, J. Tetrahedron Lett. 2002, 43, 6485; [i] Bora, U.; Saikia, A.; Boruah, R. C. Org. Lett. 2003, 5, 435; [j] Dallinger, D.; Gorobets, N. Y.; Kappe, C. O. Org. Lett. 2003, 5, 1205.
[13] Breslow, R.; Bovy, P.; Hersh, C. L. J. Am. Chem. Soc. 1980, 102, 2115.
[14a] Li, C. J. Chem. Rev. 1993, 93, 2023; [b] Ballini, R.; Bosica, G. Tetrahedron Lett. 1996, 37, 8027; [c] Ballini, R.; Bosica, G.; Mecozzi, T. Tetrahedron 1997, 53, 7341; [d] Bigi, F.; Chesini, L.; Maggi, R.; Sartori, G. J. Org. Chem. 1999, 64, 1033; [e] Bigi, F.; Carloni, S.; Ferrari, L.; Maggi, R.; Mazzacani, A.; Sartori, G. Tetrahedron Lett. 2001, 42, 5203.
[15a] Shi, D. Q.; Chen, J.; Zhuang, Q. Y.; Hu, H. W. J. Chem. Res., (S) 2003 674; [b] Shi, D. Q.; Mou, J.; Zhuang, Q. Y.; Niu, L. H.;

Wu, N.; Wang, X. S. Synth. Commun. 2004, 34, 4557; [c] Shi, D. Q.; Mou, J.; Zhuang, Q. Y.; Wang, X. S. J. Chem. Res., (S) 2003821.
[16a] Shi, D. Q.; Zhang, S.; Zhuang, Q. Y.; Wang, X. S.; Tu, S. J.; Hu, H. W. Chin. J. Chem. 2003, 21, 680; [b] Shi, D. Q.; Mou, J.; Zhuang, Q. Y.; Wang, X. S. Chin. J. Chem. 2005, 23, 1223.
[17] Tu, S. J.; Zhang, J. P.; Zhu, X. T.; Xu, J. N.; Zhang, Y.; Wang, Q.; Jia, R. H.; Jiang, B.; Zhang, J. Y. Bioorg. Med. Chem. Lett. 2006, 16, 3578.
[18] Yoneda, F.; Yano, T.; Higuchi, M.; Koshiro, C. L. Chem. Lett. 1979155.

